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A new pseudospectral matrix element (PSME) method employing the primitive variable 
formulation of the Navier-Stokes equations was used to simulate 3-dimensional time- 
dependent driven cavity flow at a Reynolds number of 3200 with an aspect ratio of 3 in the 
spanwise direction as well as 3-dimensional flow over a backward step. The new method only 
requires functions which are co continuous across the interface between two adjacent elements. 
It also ensures that the continuity equation is satisfied everywhere, in the interior (including 
the inter-element points) and on the boundary. The resulting complex geometry for flow over 
a backward step can be divided into a number of overlapping subdomains by a domain 
decomposition, of simpler geometry with patched grid points, in which the solution is more 
easily obtained. With an iterative procedure between subdomains, the complete solution is 
found by the Schwarz alternating procedure (SAP). With an eigenfunction expansion for the 
pressure, storage requirements for the 3D inversion step, 0(iV6), are reduced to O(N’) if the 
inverse of pressure equation is not stored. The parallel implementation of the three most time- 
consuming procedures: (i) computing the partial derivatives of scalar fields in terms of 
dotproduct; (ii) transforming between eigenfunction space and physical space for the pressure 
in terms of matrix multiplications; and (iii) performing the forward and backward sweeps of 
an LU decomposition to solve for the pressure have been efficiently performed on a parallel 
computer. The numerical results have reproduced dynamic longitudinal TaylorCrBrtler-like 
(TGL) vortices in qualitative agreement with the experimental results of Koseff et al. and also 
indicated other 3-dimensional effects on the flow development. Computational results for both 
2-and 3-dimensional flow over a backward-facing step at different Reynolds numbers are also 
presented in this paper. No pronounced 3-dimensional effects are observed for Reynolds 
numbers up to 450 except in the boundary layer along the spanwise direction. 0 1989 Academic 

Press, Inc. 

1. INTRODUCTION 

In the authors’ earlier paper [l] a pseudospectral matrix (PSM) method for 
solution of the 3-dimensional incompressible Navier-Stokes equations was 
presented to solve a 3D driven cavity flow with Reynolds number of 100, 400, and 
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1000. None of these simulations exhibited the phenomenon of TGL vortices, which 
requires a Reynolds number of at least 1200 according to the experimental results 
of Koseff et al. [2]. The interesting task of finding such vortices in 3-dimensional 
flow at a Reynolds number 3200 has been first successfully investigated by a finite 
difference modified Quick scheme by Freitas et al. [3]. Their numerical results at 
time 20 min are in good agreement with those found by the experiment, but they 
do not show the time development of the TGL vortices. Takemoto and Nakamura 
[4] used a third-order upwind. difference scheme to well reproduce the TGL 
vortices in a cubic driven cavity flow but only at an early stage about 7 min. Here 
we approach the problem raised by the experiment by extending the techniques in 
our earlier paper. We will use the same aspect ratio as the experiment and show the 
time development of TGL vortices up to 20 min. 

Flow over a backward step is always presented as the standard test problem for 
different numerical schemes. Some investigators [S, 63 assumed that the fully 
developed velocity profile is established right at the step and some considered the 
upstream effect before the step. Recently Armaly et al. [7] have performed a careful 
experimental study of such a flow for a wide range of Reynolds numbers. Although 
great care was taken to ensure that the initial inlet flow was 2-dimensional, in 
addition to the well-known entrance effects they also found that as the Reynolds 
number increased above 450, 3-dimensional effects became gradually apparent 
downstream from the step. These results motivated us to do numerical experiments 
on 3-dimensional flow over a backward step. 

In addition to the strict time step size constraints, 0(1/J/‘) for the viscous term 
and 0(1/N*) for the convective term, the global PSM method (single element of 
our earlier paper [ 11) is not appropriate for problems with stiff gradients in the 
interior of the domain because the well-known Gibbs’ oscillations happen. In order 
to overcome these problems, a co pseudospectral matrix element (PSME) method 
which combines the desired features of domain decomposition [S, 91 and a larger 
time step size has been developed to solve the incompressible NavierStokes 
equations in primitive variable form. The PSME method offers the same advantage 
over the c1 method (flux continuity required) as the spectral element derived from 
a variational principle [lo] in that it requires only the continuity of functions at 
the inter-element points; a continuous first derivative is implicitly imposed through 
integration by parts. 

As pointed out by Kopriva [11] in the l-dimensional inviscid case, with N 
points and K subdomains, the time step increases to At N O(K/N*) and the effort of 
matrix multiplication decreases to O(N*/K) rather than O(N*) as for a single element. 
What is more important, the sparsity of the resulting operators, nearly a 1D block 
tri-diagonal matrix in the pressure equation, tremendously speeds the LU factoriza- 
tion in contrast to the dense matrix structure resulting from the global method. 

The more complex geometry of the backward-facing step has led us to a more 
elaborate domain decomposition technique than the multiple elements used to 
handle driven cavity flow. The solution of boundary-value problems for complex 
geometries has been successfully implemented by exchanging data among the 
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different zones (or subdomains), i.e., solving the problem on each subdomain 
separately and then updating the boundary values on the overlapped interface. The 
data exchange can been done in a straightforward manner; this is what is usually 
called SAP [12]. Fuchs [13] pointed out that one major difficulty with the SAP 
when solving the incompressible Navier-Stokes equations in streamfunction- 
vorticity form for a rigid body confined in a flow region is that the value of the 
streamfunction is unknown on the surface of the rigid body. In primitive variables 
the question arises of how the boundary conditions for the pressure are handled on 
the iteratively solved subdomains even with the prescribed velocity components. 
Instead of directly imposing conditions on both the pressure and its first derivatives 
at the edge of each overlapped region [14], the consistent use of the continuity 
equation to generate the subdomain pressure boundary conditions (including the 
overlapped interfaces) should be preferable. This is mainly because the former 
definitely creates nondivergence-free velocity fields along the imaginary overlapped 
interfaces while the latter still guarantees differential mass conservation there. 

In recent years computer designers, driven by the quest for speed and stimulated 
by the developing capability of single chips, have built machines of great complexity 
and increasing diversity. Producing efficient code for any of these machines is 
difficult and often involves special features, e.g., compiler directives and special 
hand-coded assembly language routines, that make migration of the code to a 
different machine difficult. The algorithms used in this paper can be cleanly 
described using the rather minimal set of vector and parallel concepts proposed for 
Fortran 8x. Specifically, we use the ability to do dotproducts and matrix multiplica- 
tion between subsets of arrays as well as the ability to specify that it is safe to run 
some loops containing subroutines concurrently. The Alliant FX/Fortran compiler 
does a tolerable job of optimizing our program, and we expect that compilers for 
machines with quite different architectures will be able to do so as well. 

For the purpose of high-speed computation, the issue of how to map a numerical 
algorithm for the solution of each subdomain onto the specific architecture of 
parallel machines so as to achieve highly parallel performance remains an open 
question. There are roughly two approaches to this problem: (1) distribute 
processors proportional to the amount of cpu time required per subdomain or (2) 
allocate all the processors to a single subdomain and do different subdomains in 
sequence. On massively parallel systems without shared memory the first approach 
is more natural, but on shared memory systems with relatively few processors both 
are feasible. In this case, one problem with the first approach is the requirement of 
a compiler smart enough to anticipate the cpu time difference among subdomains; 
otherwise some processors with their jobs done earlier have to sit idle until other 
processors finish their jobs. On the contrary, there is no data communication 
constraint for the second one and it becomes more attractive if the computation of 
each subdomain can be highly parallelizeable. In this paper, the authors would like 
to use this concept to apply the PSME method to the solution of incompressible 
flows in complex geometries. 

The paper has eight sections: the first being the Introduction. Section 2 provides 
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general information on the calculation of derivatives by the PSME method and 
comparisons between the co and c1 methods for a standard convection-diffusion test 
case. Section 3 describes the physical problems and appropriate boundary condi- 
tions and Section 4 formulates the Navier-Stokes equations in primitive variable 
form by the PSME method and outlines the solution techniques. In Section 5 the 
Schwarz alternating procedure used in flow over a backward step is explained. 
Section 6 gives some details on parallel implementation of Navier-Stokes equations 
and provides timings on the Alliant FX/8 series of multi-processors. Section 7 
presents the numerical results on dynamic longitudinal TGL vortices as well as flow 
over a backward step and the last section provides our conclusions. 

2. CALCULATION OF DERIVATIVES BY PSME METHOD 

The spatial domain is divided into NE elements, each of which has N + 1 
collocations which are scaled translations of the N + 1 standard collocations 
xj = cos rt(j - 1)/N (1 < j < N + 1) in the interval [ - 1, 11. Explicitly the points 
for the eth element are xi= $[ae+ be+ (be-d) cos n(j- 1)/N] (1 <j< N+ 1; 
1 < e < NE). The derivatives of a function j(x) in the interior of element e can be 
discretized as 

(lb) 

Here L’ is the length of the eth element defined on the interval Cue, b’], 

f’, 3 f e(x,), and h(i), Gr’x(‘) are the invariant derivative matrices based on the 

domain [0, l] with &(q) = 2qTRcq)$, q = 1, 2, and Rt2) = R(‘)R(‘), where T, R(l), 
T are (N + 1) x (N + 1) matrices with elements 

T. ,-cos 4i- l)(j- 1) 
1.J - N @a) 

R(‘! = 0, i> j or i+ j is even 
kJ 

W- l)lci, otherwise ( C1 =2, Ci= 1 for i>,2) (2b) 

and 

Ti,j= cos n(i- l)U- 1) 2 

NC, Cl N 

tc, = cN+ 1 =2, ci= 1 for 2<i<N). @cl 
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The interfacial derivatives at the inter-element points, are approximated by 
weighting of the derivatives from each side, according to the relations 

fx I interface = Olf: + Pf:' ' (3a) 
fxx I interface =af',,+Pf::', cr+fl=l, l<e<NE-1. (3b) 

Choosing a and /I to be their respective fractions of the total length of two adjacent 
elements, Eqs. (3), in view of Eqs. (1 ), now become 

In Eq. (4a), co continuity is explicitly assumed whenever the calculation of interface 
values of the first derivative is required. However, co continuity is only implicitly 
assumed for the second derivative calculation. We can expand Eq. (4b) using 
Eq. (lb) and impose c1 continuity to get 

(5) 

where it has been implicitly assumed that f t;(x,+ , ) = f :’ ‘(x1) = f, Iinterface. As will 
be shown shortly, the explicit value off, Iinterface is never needed. This requirement 
is met by the finite element method employing variational or Galerkin procedures 
with trial functions that are co across element boundaries, i.e., flux (first derivative) 
continuity is intrinsically satisfied through integration by parts. This is exactly the 
same for the PSME method because the second term in the bracket of Eq. (5) is 

automatically cancelled out since, (j& = (2N* + 1)/3 = -$x(‘) I,1 N+l,N+l. The 
elements of the modified matrices BX*, BX** are 

BX:: = , & *$’ G%$G?$. (6b) 
It=* 

The proposed PSME method together with a c’ [15, 161 method has been tested 
on a standard l-dimension convection-diffusion problem 

d*f z-Pe$=O 
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FIG. 1. A plot of the error for two element approximation at the inter-element position (a) x=0.5, 
(b) x=0.9, and (c) x=0.99. Here L= IILumsneal-LXas,IIa,r and N is the number of points per element. 

with boundary conditions 

f(O)= 1 @aI 

f(l)=0 (84 

which has the exact solution f(x) = (exp Pe - exp Pe x)/(exp Pe - 1). With the 
inter-element position at x = 0.5 for Pe = 10, the two element approximation for 
both the co and cl methods exhibit exponential convergence as the number of 
points per element is increased as indicated in Fig. la. However, at Pe = 100 and 
1000 with the inter-element position at x=0.9 and 0.99, Figs. lb and lc show that 
the co method is superior to the c1 method in resolving the steep change of function, 
typical of high Pe number, because the cl method yields the well-known Gibbs’ 
oscillations. 

FIG. 2. Three-dimensional cavity flow configuration and coordinate system. 
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FIG. 3. Three-dimensional configuration for flow over a backward step. 

3. GOVERNING EQUATIONS 

The 3-dimensional cavity flow in a rectangular box (shown in Fig. 2) with an 
aspect ratio of 3 in the spanwise direction as well as 3-dimensional flow over a 
backward step (shown in Fig. 3) with an expansion ratio 2 in the vertical direction 
and an aspect ratio of 8 in the spanwise direction can be represented in a primitive 
variable formulation. In Cartesian coordinates, the time-dependent Navier-Stokes 
equations in dimensionless form can be written as 

auj 
G=O* 

Pa) 

(9b) 

Here U, u, w are the velocity components in the horizontal (flow), vertical, and 
spanwise directions, respectively, and Re is the Reynolds number based on the 
horizontal length of the rectangular box and top moving plate velocity in driven 
cavity flow, while in flow over a backward step the Ryenolds number is defined by 
the maximum velocity of inflow and the step height. 

3.1. Driven Cavity Flow 

Equations (9) are only solved for half of the domain due to the experimental 
results [2] showing symmetry about the xy plane at z = 1.5, i.e., U, u, p are sym- 
metric (au/& = 0, au/az = 0, ap/az = 0) and w is anti-symmetric (w = 0) with respect 
to the central plane. Initially all velocity components are zero; at time t > 0, the top 
plate suddenly starts translating with a uniform velocity. 

3.2. Flow over a Backward Step 

Similarly, only half of the domain needs to be solved according to the experimen- 
tal results [7] of symmetry about the xy plane at z=O. The boundary conditions 
are given by 

u=w=o, u=4(y-y2) atx=-2 (loa) 

a% a20 azw o -c---z 
ax2 ax2-ax2 at x=1 (lob) 
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u=v=w=o aty=l (1Oc) 
u=v=w=o at y=O for x<O (1M) 
u=v=w=() at y= -1 for x20 (lb) 
u=v=w=() at z=4 (100 

au au ap o -=-c-z 
aZ aZ aZ ' w = 0, at z = 0. 

Appropriate outflow boundary conditions are required when calculations are 
performed in open domains without making a fully developed flow profile at far 
downstream, and these conditions should have little influence on the upstream flow 
development. This is usually the case when the upstream continuously generates the 
disturbance which will be propagated into the downstream. 

Note that different downstream boundary conditions are possible, for instance, in 
the 2-dimensional case. 

1. u, v both prescribed 
2. aulax=o, V=O 

3. aqax=o, a*qax*=o 
4. a%/a2 =o, azv/ax*=o. 

Conditions (1) and (2) seem too restrictive to be applied on the truncated domain, 
while conditions (3) and (4) yield the least effect upon the upstream flow develop- 
ment. Conditions (1) and (2) are the only appropriate downstream boundary 
conditions for fully developed flow at infinity or far away from the step. 

4. PRIMITIVE VARIABLE FORMULATION 

The method applied to solve the Navier-Stokes equation is Chorin’s [17] 
splitting technique. According to this scheme, the equations of motion, in tensor 
form, are 

where Fi = -uj &.ii/axj + l/Re a2ui/ax~. 
The first step is to split the velocity into a sum of predicted and corrected values. 

The predicted velocity is determined by time integration of the momentum equa- 
tions without the pressure term 

g+1= u;+ AtF;. (12) 
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The second step is to develop the pressure and corrected velocity fields that 
satisfy the continuity equation by using the relationships 

(13b) 

The explicit scheme just outlined is spectrally accurate in space but only lirst- 
order accurate in time. It can be modified to second-order accuracy in time by 
treating the viscous term by a Crank-Nicholson scheme and the convective 
term by an Adams-Bashforth scheme as described in 181. Thus, Eqs. (11~(13) are 
rewritten as 

where Fi = -uj dui/axj. 1 st step: 

2nd step: 

w At a%7 + ‘pk u;+‘.“=q+l-At -+-I 
axi 2 Re ax; 

8i-f U;+l,k+LU;+Lk-At _ 
ax, 

(14) 

(15) 

(W 

au!+ I,k+ 1 
I 

dXi 
= 0; (16~) 

where pk+ ’ = pk +p’ and k is the iteration number. This approach is effective at 
low Reynolds numbers because the gain in time step size more than offsets the costs 
of iterating the coupled momentum and pressure equations. 

For the current paper, we have used both methods to simulate the TGL vortices 
at the Reynolds number Re = 3200. It was found that generally 34 iteration counts 
were required for Stokes solution, but the time step size only increases by 
approximately a factor of 2, so the entire rest of the paper will be focused on the 
simple method and its implementation on a parallel computer. This also applies to 
our discussion of 3-dimensional flow over a backward step. 

In order to set up a simple and efficient matrix operation for derivatives by the 
PSME method, a differentiation operator with global-type structure can be con- 
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strutted which combines each local element derivative. To do this, Eqs. (la) and 
(4a), representing the first derivatives, are cast into the form 

f’ = G”‘f , 

where Go) has the diagonal form 

G(l) = 
‘I 

A(NE-1) 

t ’ 

A((NE) 

(17) 

(18) 

The hatched area in Eq. (18) arises from the use of Eq. (4a) at the element-element 
interface while the non-overlapped area is simply Eq. (la) in the interior of each 
element. The blocks A’“), n = 1, . . . . NE are of size (N+ 1)2 with a one point overlap 
at the corners. 

In an analogous manner, the second derivative in Eqs. (lb) and (4b) can be 
written in the form 

f” = G (2’1 9 (19) 

where GC2) has the same diagonal form as that of G(l). 
Using the subscripts i, j, k for the x, y, and z directions, the discretization of 

Eq. (13a) takes the form 
mz(4 

uyi’; = ii;;; -At C GXi,Z Pm,j,k GW 7 r 
m=ml(i) 

12(i) 

0;;: = 6;;: - At 1 GYj,l/’ Pi,,, 

I= h(i) 

m(k) 

WY;; -At 9 * 
= WY; 

, , C GZk:!t Pi.1.n. 
n = n,(k) 

Here ml(i), Ii(j), n,(k) are the column indices for the first nonzero elements in rows 
i, j, k of their respective partial derivative matrices GX”‘, GY”‘, and GZ”), while 
m,(i), r,(j), n,(k) are the column indices of the last nonzero elements in those rows. 

Taking the divergence of Eq. (13a), applying the continuity equation (13b) 
throughout the whole domain, and incorporating prescribed velocity boundary 
conditions generates a pressure Poisson equation in the interior and supplemental 
equations at the boundaries. In the interior, 

m2W /z(i) nz(k) 

C BXi,mPm,jgk+ C BYj,,Pi,/,k+ 1 BZk,nPi,j,rt=Si,j,k 
m = ml(i) I= h(i) n=n,(k) 

(21) 
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for 2<i<NX, 2<j<NY, 2<k<NZ, where NX+l, NY+l, NZ+l are the 
overall number of points in the x, y, z directions, respectively. Si,j,k is the source 
term corresponding to the divergence of the predicted velocity from Eq. (13a). The 
supplemental pressure equations at the boundaries have the form 

w(i) 
C BXi,rn Pm,j,k = St,j,k, i=l, AX+1 (224 

m =ml(i) 

The coefficients for the matrices BX, BY, BZ are 

/2(i) 

C BY.1 Pi,/k = Si,j,k, j= 1, NY+ 1 Pb) 
I= h(i) 

nt(k) 
1 BZk,n Pi,j,n = Si,j,k, k=l,iVZ+l. WC) 

n = n,(k) 

NX 

BXi,m= 1 GXt,‘jGXz,, 
p=2 

Pa) 

BYi,,= F GY;,‘;GY;j 
q=2 

Pb) 

Equations (20~(23) are the general formulas for the 3-dimensional pressure 
Poisson equations. Note that when special boundary conditions apply, the 
derivative matrices GX”), GY”), GZ”) can be modified in compliance with the (i) 
symmetry (the first derivative of the function is zero); (ii) antisymmetry (the func- 
tion and its second derivative are zero), and (iii) inflection (the second derivative 
of the function equals zero and changes sign at the inflection point) boundary 
conditions. The range of the index associated with each derivative matrix and its 
coefficients will be changed accordingly. 

Following an eigenfunction expansion technique (described in detail in Ref. [ 1 I), 
we first diagonalize the reduced derivative operators BX*, BZ*, which differ from 
the original operators BX, BZ by having absorbed the unknown pressure boundary 
terms expressed in terms of interior pressure field variables. This is done so they 
have an expansion in real eigenvalues 

EX-‘BX*EX = A 

EZ-‘BZ*EZ=x 
CW 

(24b) 

where A is a diagonal matrix of dimension NX- 1 with diagonal elements ai which 
are the eigenvalues of the matrix BX* and x is a diagonal matrix of dimension 
NZ - 1 with diagonal elements /Ik which are the eigenvalues of the matrix BZ *. The 
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column vectors of the matrices EX, EZ are the corresponding eigenvectors 
associated with each eigenvalue. 

If the pressure is expanded in a series of the eigenfunctions such that 

P=EXpEZ= Pa) 

and the source term similarly expanded such that 

S* =EX s* EZ=, Wb) 

where the source term S* is the original S combined with known boundary source 
terms to form the operators BX *, BZ*, then the original 3-dimensional pressure 
equation is reduced to a simple l-dimensional equation for each i = 2, . . . . NX and 
k = 2, . . . . NZ, 

and 

h(j) 
C BYj,/bi,gtc = S,l;k, j= 1, NY+ 1. 

The overall solution for the pressure can be obtained through the linear super- 
position of each eigenvalue and its associated eigenvectors. The matrix BY is nearly 
a block tri-diagonal matrix with the partitioned form 

(27) 

where A(“), B(“), C@‘), n = 1 , ***, NE, are (N + 1)’ matrices with a single point inter- 
overlapped shaded region and the order of the square matrix BY equals NE x N + 1 
(i.e., NY + 1). 

Solving the bind matrix using the eigenfunction expansion technique on a 
parallel computer will be dealt with in Section 6. 
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FIG. 4. Three-dimensional configuration of domain decomposition. 

5. SCHWARZ ALTERNATING PROCEDURE 

The SAP for iterative solution of the incompressible Navier-Stokes equations 
in primitive variable form for the 3-dimensional flow over a backward step is 
summarized as follows (see Fig. 4): 

1. First assume z/‘+l, v”+‘, wn+’ on IJABMV. Usually nR, v”, w” would be 
a good initial guess. 

2. Solve domain II u III employing boundary conditions derived from the 
continuity of velocity field on q IABM’V, i.e., au/ax= -av/ay- awl& where the 
pressure Poisson equation is solved by an eigenfunction expansion technique. 

3. With the solutions of un+i, v”+ ‘, wn+’ on q NBEX from step (2), solve 
domain I u II employing the same type boundary conditions as above for the 
pressure on q NBEX, i.e., av/ay = -au/ax - &v/az, to update u”+ I, v”+ I, w”+ I on 
0 ABMN. 

4. Repeat steps (2) and (3) until the converge tolerance has been met for 
u”+1 ,v ,wn+l ?I+1 along q ABMN, Cl NBEX. 

The novel features of this iteration scheme are : (i) for each iteration the 
divergence-free condition is exactly satisfied everywhere except at the boundary 
points in the direction where the inflow carries singular information; (ii) for every 
time step only a few iterations (usually 2-4) are required to reach the converged 
solution for velocity components u, v, w; (iii) consistent mass conservation holds 
along BN despite a singular value for the vorticity; and (iv) within each subdomain 
the eigenfunction expansion technique is still available to decompose the original 
3-dimensional problem into a simple l-dimensional matrix operator. 

6. PARALLEL IMPLEMENTATION OF N-S EQUATIONS 

It is easy to use parallelism to solve problems which can be decomposed into 
completely independent subproblems, but becomes progressively more difficult to 
do efficiently as dependencies between the subproblems increase. In this section we 
will reduce the ideas of the previous sections to parallelizable Fortran code. We 
assume the compiler can detect and the target machine exploit the inherent 
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parallelism of an outer loop containing an inner loop with data dependencies which 
allow the outer loop to be distributed across processors. The Alliant FX series will 
then attempt to vectorize the inner loop, and we have tried to write our inner loops 
so this is possible. It is not, of course, necessary for exploiting the outer loop 
parallelism. We make use of two intrinsic functions from the proposed Fortran 8x 
standard--matmul and dotproduct. This is not necessary, but it simplifies the 
programming significantly in some places. 

In our version of the time splitting approach three steps account for most of the 
run time. These are computing the partial derivatives involved in updating the 
predicted velocity, transforming back and forth from physical to eigenfunction 
space, and solving the sequence of reduced l-dimensional pressure equations in 
eigenfunction space. Each will be discussed separately below. 

6.1. Predicted Velocity: Vector Dot 

Updating the predicted velocity according to Eq. (12) requires that the first and 
second partial derivatives be computed in each of three directions for each compo- 
nent of the velocity at each point in space. Letting i, j, k be the indices of the spatial 
coordinate, 4 be any of the velocity components, and recalling the structure of the 
derivative matrices specified in Eqs. (17), (18), and (19), we can rewrite Eq. (12) as 

for each i = 2, . . . . NX, j = 2, . . . . NY, k = 2, . . . . NZ, 

+ dt [ dotProduct (A GX!2’ -uTkGX?) 
r,ml(r).mg(r) , , z,ml(r):nq(i)~ 

+ dotproduct 
( 

k GY~~~(j):j2(j)-V;j,kGY~~~(j):12(j), dTll(j):h(j).k) 
) 

+ dotproduct & GZf!tl(k):n2(/c)- W;j,kGZE?rl(k):q(k) 

Here the three dotproduct terms correspond to the three spatial directions. Each 
loop instantation of a dotproduct involves one row of a matrix having the structure 
shown in Eq. (18) and an expression such as m,(i): m2(i) specifies the index range 
for the dotproduct. The matrices are sufficiently sparse that it is worthwhile to 
perform the dotproduct only on the nonzero elements. Since dotproducts are linear 
in each factor, we use one dotproduct to compute both the first and second partials. 
Changing subscripts to arguments, the “for each” statements to do loops, and using 
“*” to denote multiplication converts the above expression to a syntactically correct 
Fortran 8x fragment. 

Although computing partial derivatives is not the most time-consuming part of 
the calculation, it is the hardest to do efficiently. The fundamental difficulty is that 
computing derivatives involves operations which are local in the topology of 
3-dimensional space, but will not be local in either the Fortran representation of a 
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3-dimensional array or its realization in machine memory. The problem is com- 
pounded on machines, such as the Alliant, which have a memory cache. One way 
to ameliorate the problem is to partition a 3-dimensional array, such as a velocity 
component field, into smaller but still 3-dimensional blocks each of which will fit 
into a cache. Operations on such arrays are then performed block by block. 
Recognizing when it is efficient to do this and generating appropriate code clearly 
pose serious challenges for a compiler. A discussion of how to block some basic 
linear algebra using as primitive the operation C + C + AB, where A, B, and C are 
2-dimensional arrays, can be found in [ 181. Some of these simpler cases have been 
implemented in the Alliant compiler. It does a tolerable but far from perfect job on 
our derivative computation problem. We could probably improve its performance 
by hand-blocking our arrays at a cost of increased programming effort and reduced 
portability. It would be interesting to see what the Fortran compilers for machines 
with a great number of processors could do with this problem. 

6.2. Tensor Product: Matrix Multiply 

Converting the pressure and source term from eigenfunction space back to 
physical space in Eqs. (25a) and (25b) requires a series of matrix multiplications. 
This is also true for the reverse conversions from physical to eigenfunction space. 
To implement this we use the Fortran 8x intrinsic function matmul. For example, 
Eq. (25a) becomes, for each j = 1, . . . . NY + 1, 

p:,j,: = matmul[EX, matmul(@:,j,., EZT)], 

where “:” indicates the full range including the unnecessary indices for boundary 
pressure terms. This is only for convenience, and the specific index range would be 
permitted. 

6.3. Pressure Equations: LU Decomposition 

Using Chorin’s splitting scheme, our techniques lead to a separable problem for 
the finite dimensional analogue of the Poisson equation for the pressure. With an 
eigenfunction expansion in two directions, the resulting sequence of l-dimensional 
problems is solved by LU factorization. This reduces our storage requirements for 
the inverse from O(N6) to O(N4). If the inverse is not stored, storage requirements 
for the inversion step are reduced to O(N’). By paying careful attention to the 
nearly block tri-diagonal structure of the reduced l-dimensional operator, 
Eq. (26a), where the eigenvalues cli, Bk appeared on the diagonal line with the 
exclusion of two boundary points y = 0 and 1, an efficient implementation of both 
the forward and backward substitution of LU decomposition has been developed 
to match the architecture of parallel processors. Without loss of generality, we 
assume storage for the inverse matrix of pressure O(N4) beyond the physical 
memory of the machine itself. Although forward sweep is automatically 
parallelizable, storage of O(N’) instead of O(N*) is still required in order to 
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execute the backward substitution in parallel, so that the overall memory required 
for pressure solution is of the same order of magnitude as for the field variables. 

The pressure matrix structure as sketched in Eq. (27) can be interpreted as an 
algebraic equation 

Ax=b. (28) 

The discussion of the solution of Eq. (28) is split into two steps. 

6.3.1. Forward sweep. In the process of rowcolumn reduction, rows run in a con- 
current mode and columns run in a vector mode. All off-diagonal zero coefficients 
can be screened out without any manipulation. The scalar multiples making a 
column of zeros below the diagonal are stored in the lower triangle of matrix A and 
used later for the reduction of source term b in Eq. (28). The speedup is propor- 
tional to the number of processors applied to this step except for an offset caused 
by data addressing. 

6.3.2. Backward substitution. The eigenfunction expansion is crucial to perform- 
ing the backward substitution in parallel because it makes Eq. (26) independent for 
different values of the eigenvalue indices ai, Pk. 

The following Fortran code is part of the complete solution for the pressure and 
illustrates the essential point. First we reduce the source term b by using the 
elements stored in the lower triangular part of A during the forward sweep 

do i=2, NP 
il=i-1 
do n=2, NUM 

b(i, n) = b(i, n) - dotproduct(A(i, 1 :il, n), b( 1 :il, n)) 
end do 

end do 

where NUM is the total number of points in one of the directions with the 
eigenvalues; NP is the total number of points for Eq. (27). Next we perform the 
backward substitution as 

do n=2, NUM 
b(NP, n) = b(NP, n)/A(NP, NP, n) 

end do 
dok=l,NP-1 

i=NP-k 
ind = iref(i) 
m=NP-k+l 
do n=2, NUM 

b(i, n) = (b(i, n) - dotproduct(A(i, m:ind, n), b(m:ind, n)))/A(i, i, n) 
end do 

end do 
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TABLE I 

Cpu Time in Seconds per Time Step 

Number of processors 1” 1 2 3 4 8 
132.0 80.3 42.86 30.48 24.42 14.97 

Speedupb 1 1.87 2.63 3.29 5.37 

’ Code without any optimization. 
b Compared to one processor. 

where iref(i) is the index of nonzero upper diagonal elements with respect to each 
row index i The innermost loop performs both source term reduction and back- 
ward substitution on a given row. This is done for all the (independent) matrices 
labeled by eigenvalues before the row index is changed. 

6.3.3. Timings. Table I shows some timings for implementation of our program 
for the solution of 3-dimensional driven cavity flow with MC=42 (7 elements), 
NY= 36 (single element) and NZ= 48 (8 elements with equal length), running on 
an Alliant FX/8-series (eight processors) computer. 

The method used to compute the solution of the Navier-Stokes equations in 
parallel performance is very important for the technique of domain decomposition 
with SAP. The basic idea is that in alternately performing steps (2) and (3) of 
Section 5 all the processors are used to update whichever subdomain II u III or 
I u II is current. Updating such a geometrically simple region can be performed 
efficiently in parallel as we sketched earlier on driven cavity flow. 

Tables II and III show some timings for the implementation of our program for 
the solution of both 2- and 3-dimensional flow over a backward step at Reynolds 
number 375 (four iterations of SAP) with NX=60 (10 elements), NY= 36 (6 
elements) at downstream, while NX= 12 (2 elements), NY= 18 (3 elements) at 
upstream, and NZ = 48 (single element), running on the same computer. 

Note that using eight processors speeds the computation by factors of 5.37 and 
5.5 for the 3-dimensional driven cavity flow and flow over a backward step, respec- 
tively. It is worth emphasizing that our program is written entirely in terms of the 
proposed Fortran 8x standard and can be run on any machine for which a compiler 
implementing the standard exists. 

TABLE II 

Cpu Time in Seconds per Time Step (2D) 

Number of processors 1 2 3 4 8 
4.07 2.10 1.48 1.18 0.74 

Speedup” 1 1.94 2.75 3.45 5.52 

D Compared to one processor. 
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TABLE III 

Cpu Time in Seconds per Time Step (3D) 

Number of processors 1 2 3 4 8 
235.5 121.1 90.1 73.5 43.5 

Speedup” 1 1.84 2.61 3.20 5.42 

L? Compared to one processor. 

7. RFSULT~ AND DISCUSSION 

7.1 Driven Cavity Flow 

This subsection discusses the results we have obtained for the 3-dimensional 
driven cavity flow. In the present case, as mentioned in Section 6, 43, 37, and 49 
grid points were used in the x, y, and z directions, respectively. For Re = 3200 
integration of the time-dependent 3-dimensional momentum equation was 
performed from time zero to t = 166.67 (real time 20 min) with At = 0.0036, which 
is larger than that of the global method. 

In order to exhibit the dynamic behavior of TGL vortices, the computed velocity 
fields are displayed in vector plots at time 10, 15, and 20 min, respectively. The xy 
plane velocity vector plots at the central plane z = 1.5 are sketched in Figs. 5a, 6a, 
7a. Despite the prominent boundary effect caused by the side wall in the spanwise 
direction, primary vortices appearing on both sides of the xy plane at the lower 
corners still can be observed, but the intensity change as a function of time may 
imply some periodic relationship. At the same time, the 2-dimensional secondary 
vortex generated at the left upper corner no longer exists in the 3-dimensional case. 
This is probably due to the fact that the energy confined in a 2D domain will split 
a part in the third direction when the 3D problem arises. 

Recall from [l] that, for the yz plane flow patterns at Re = 1000 in the cubic 
driven cavity flow, no TGL vortices were found near the downstream wall while a 
single pair of upper and lower corner recirculating flows was seen at the middle 
plane x=0.5, as well as a nearly upward flow close to the upstream wall and a 
downward flow near the downstream wall appeared. Figures 5d, 6d, and 7d show 
the well-developed flow pattern visualized at plane x= 0.765, where between 334 
pairs of TGL vortices plus one corner pocket recirculating flow near the bottom 
surface were formed. These computed results demonstrate the temporal variation in 
corner vortex and TGL vortex strength and size due to spatial location. In Figs. 5c, 
6c, and 7c at the mid-plane x = 0.5, less obvious TGL vortices are formed when the 
position is far away from the downstream well. The presence of TGL vortices is 
explained by Koseff et al. [2] as the formation of the corner vortex inducing a 
rotational effect which propagates out from the side wall toward the center, and in 
conjunction with primary cell circulation results in the unstable interface. All the 
computational results are in qualitative agreement with those found by the 
experiment of [2]. A firework-like flow pattern near the upstream wall, seen in 

581/83/2-3 
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FIG. 7. Flow direction vectors at time 20 min for Re = 3200 in the (a) z= 1.5 plane, (b) x=0.03 
plane, (c) x=0.5 plane, and (d) x=0.765 plane. 
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FIG. 8. Three-dimensional cavity velocity profiles for Re=3200 on (a) vertical centerline and (b) 
horizontal centerline. 
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Figs. 5b, 6b, and 7b at plane x = 0.03, is continuously entrained by the top moving 
plate. This is the same as the low Reynolds number in the cubic driven cavity flow 
problem. 

Figures 8 compares the numerical results of time evolution of velocity profiles for 
the u component on the vertical centerline and u component on the horizontal 
centerline at the symmerty plane z= 1.5 together with experimental results 
shown on the same plot. Despite some deviation from the experimental results, 
qualitatively a good agreement still can be observed. These results, moreover, 
provide information on the dynamic behavior of TGL vortices. 

7.2. Flow over a Backward Step 

This subsection presents the results obtained by applying the present scheme, 
domain decomposition with SAP, to the 2- and 3-dimensional flow over a back- 
ward step. First, we will examine the effect of our downstream boundary condi- 
tions, the second derivative of velocity components vanishing in the streamwise 
direction, upon upstream flow development. Figure 9 shows that the reattachment 
length at Re = 150 with cut-off downstream position x/S= 19 (8 elements), 10.5 (5 
elements), and 7.5 (4 elements) agrees very well with those found by Dirichlet 
boundary condition applied at infinity by the same method. Even the minimum 
streamfunction, i.e., timin = -0.04421, -0.04434, -0.04425 for x/S= 19, 10.5, 
and 7.5, respectively, exhibits the same accuracy when compared to [19], 
$,in = -0.0436 by using 33 * 297 grid points. Figure 10 provides streamline plots 
for the range of Reynolds number between Re = 75 and Re = 450. As expected, with 

a 
1 

8.5 
a 

-0.S 
-1 

b 

FIG. 9. Flow over a step, Re = 150, with downstream conditions at x/S=: (1) 19.0, (b) 10.5, (c) 7.5. 
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FIG. 10. Streamlines for flow over a step with Re =: (a) 75, (b) 150, (c) 225, (d) 300, (e) 375, (f) 450. 
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FIG. II. Velocity profiles of the inlet now along the transverse direction with Re =: (a) 225, (b) 300, 
(c) 375, (d) 450. 
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FIG. 12. Spanwise location of reattachment line with ditTerent Reynolds numbers. 
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increasing Reynolds number, the downstream reattachment length of flow develop- 
ment increases up to Re = 375, while at Re = 450 the reattachment length slightly 
decreases and the secondary vortex appears at the upper wall. 

As Armaly et al. [7] have pointed out, the deviation of the 2-dimensional flow 
calculation from experimental results is due to the 3-dimensionality of the 
experimental flow observed above Reynolds number 450. From the numerical 
results of 3-dimensional flow, the velocity profiles of inlet flow along the transverse 
direction are given in Fig. 11. As expected, this shows 2-dimensional inlet flow 
except for the overshooting phenomena within the thin boundary layers due to the 
well-known entrance effect. The 2-dimensionality of the flow, except in the bound- 
ary layers, for Reynolds number, Re = 225, 300, 375, is demonstrated by the plot 
of the spanwise location of the reattachment line shown in Fig. 12. The same figure 
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FIG. 13. Downstream spanwise velocity profiles with Re =: (a) 225, (b) 300, (c) 375, (d) 450 at 
vertical position y = 0.5. 
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also provides the data for Re = 450 where the 3-dimensionality of the flow gradually 
develops, i.e., the reattachment length along the symmetry plane is slightly higher 
than 2D. Downstream spanwise velocity profiles are plotted in Figs. 13 and 14 at 
vertical positions y = 0.5 and -0.5, respectively. All profiles outside the boundary 
layers remain 2-dimensional for all the indicated Reynolds numbers. Figure 15 
sketches downstream velocity profiles for both 2- and 3-dimensional flow along the 
symmetry xy plane at z =O. It indicates that the deviation between 2- and 
3-dimensional flow is not pronounced for Reynolds numbers up to 375 except the 
downstream region close to the step at Re = 450. 
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FIG. 14. Downstream spanwise velocity profiles with Re =: (a) 225, (b) 300, (c) 375, (d) 450 at 
vertical position y = -0.5. 
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FIG. 15. Downstream velocity profile plots for 3-dimensional flow with Re =: (a) 225, (b) 300, (c) 
375, (d) 450 along the symmetry plane z = 0. 

8. CONCLUSIONS 

The 3-dimensional Navier-Stokes equations have been solved by Chebyshev 
pseudospectral matrix element method employing a primitive variable formulation 
of splitting technique to simulate the dynamic TGL vortices in driven cavity flow. 
In the solution approach, the continuity equation is satisfied everywhere, in the 
interior (including inter-element points) and on the boundaries. The numerical test 
case indicates that the co PSME method is superior to the c1 PSME method when 
applied to the problem with steep gradients. 

Domain decomposition with SAP has been used to simulate flow over a back- 
ward step. In the solution approach, the complex geometry is divided into a few 
subdomains, each of simple geometry, where the pressure solution can be easily 
obtained. With the continuity equation as the boundary conditions at the 
overlapped interfaces, an eigenfunction expansion technique can be applied to each 
subdomain to give the direct and fast solution of the 3-dimensional pressure 
Poisson equations in l-dimensional form so that the parallel implementation of 
each subdomain could be easily achieved. 

The key feature of the work presented is that with an eigenfunction expansion in 
two directions, the resulting 3-dimensional direct matrix inversion for the pressure 
Poisson equations is reduced to a set of simple l-dimensional problems for which 
the data dependency occurring in the backward substitution of LU decomposition 
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is eliminated. This makes possible efficient parallel performance of both the forward 
and backward sweep. The other time-consuming parts of the calculation can be 
reduced to dotproducts and matrix multiplications-basic linear algebra operations 
defined in the proposed Fortran 8x standard and efficiently implementable on wide 
classes of vector, parallel, and vector-parallel machines. The main results shown 
here were obtained on an Alliant FX/8 vector-parallel mini-supercomputer with 
two processors. 

Numerical results computed by the PSME method have shown dynamic lateral 
TGL vortices in driven cavity flow which are in accord with experiments. For flow 
over a backward step, numerical results are in good agreement with the 
2-dimensional experimental results. For Reynolds numbers up to 450, we found 
that 3-dimensional effects are confined to the boundary layer region in the spanwise 
direction. 
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